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Abstract Equations are derived for the isotropic dissolution of 
single particles, considering simple forms of the six crystal systems. 
These can be summarized by three basic equations which are ap- 
proximated well, and in some cases exactly, by the dissolution equa- 
tion for a hypothetical spherical particle of specified diameter. For- 
mulas are given to enable calculation of this diameter and to minimize 
the weighted errors in the approximations. Spherical approximations 
provide a simple basis for calculating the dissolution profile of real 
multiparticulate systems which are difficult to describe otherwise. 
Spherical approximations based on equal surface area or volume result 
in large errors. 
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The influence of shape factors on dissolution kinetics 
of drugs has been discussed for tablets and time-re- 
leased tablets (1,2), but little attention has been given 
to single drug particles (3,4). Most dissolution kinetic 
models consider spherical particles. Application of such 
models to real particle systems is complicated by the 
fact that pure drug particles are not spherical. The usual 
approach has been to treat the real particles as hypo- 
thetical spherical particles having the same surface area 
or volume. Such approximations may introduce sub- 
stantial errors. 

This paper presents exact isotropic single-particle 
dissolution equations for several nonspherical forms and 
formulas, enabling calculation of the diameters of hy- 
pothetical spherical particles which closely approximate 
the dissolution of these forms. 

particle, the following equation arises: 

wo 

or: 

(Eq. 4) 

0%. 5) (;)'I3 = 1 -Gt  J 

where ro is the initial radius of the particle. 
Therefore, when a spherical particle dissolves isotropically (J  = 

constant), it obeys the Hixson and Crowell (5) cube root law; that is, 
a plot of (w/wO)1/3 uersus time is linear. 

Dissolution of Prismatic Particles-Structures I-VI are 10 
simple forms of the six crystal systems and illustrate the dimensional 
quantities bo, CO, lo, ho, and a used in the following derivations. It is 
assumed that bo < co < lo. 

Consider a prismatic particle of initial length lo and having a regular 
n-gonal cross section with side of initial length bo. The distance, s, 
from the n sides of the polygon to the center as reference point de- 
creases during dissolution according to Eq. 3. The area of the cross 
section at any time is then equal to n[so - (J/p)tI2 tan (dn), and the 
length of the prism is equal to l o  - (W/p)t, so the particle weight a t  
time t is: 

which, since SO = (bo/2)  cot (?r/n), can be written as: 

Prism pyramid 4 Pyramid 

1. ISOMETRIC 
THEORY 

prism 
II. mRAGONAC 

Assume that dissolution takes place isotropically, that is, that the 
rate of dissolution per unit surface area, J, is constant so that the 
following equation can be written: _. a 

dw -- - -JA (Eq. 1) ' 0  ; : 
_... J--. ...: 

, I  

I :  . .  dt 
where w is the amount undissolved, and A is the surface area. This 
equation implies that the boundary of a plane interface retreats with 
constant speed during dissolution such that: 

pyramid ' 0  pyramid 
prism bLl 

prism 

-- ds - __ J (Eq. 2) m. HEXAGONAL W. RHOMBIC 
dt P 

where p is the density, and s is the distance perpendicular to the in- 
terface from some fixed reference point in the dissolving solid. 
Equation 2 integrates to: 

J s = s o - - t  
P 

where SO is the initial (t  = 0) distance to the reference point. When 
this equation is applied to the isotropic dissolution of a spherical V. MONOCLINIC VI. TRlCLlNlC 
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Figure 1-Influence of the shape ratio, F, on  the  intrinsic dissolu- 
tion profile of  an n-gonal prismatic particle (tetragonal or hexago- 
nal) or a rhombic pyramidal particle. T h e  four curves below and 
including the diagonal are square root plots. T h e  four  curves above 
and including the diagonal are cube root plots. T h e  dissolution de- 
viates increasingly from the (wlwa) ll3 versus t* linear relationship 
(the cube root law) as the  shape ratio becomes less than  1 and ap- 
proaches a linear (wlwa)1/2 versus t* relationship (the square root 
law). 

At t = 0, wo = plo(n/4)bo2, so Eq. 7 can be written: 

2J (Eq. 8) 
wo 

Equation 8 comprises the exact dissolution equations for the prismatic 
forms of the isometric (n = 4, bo = lo),  tetragonal (n  = 4, bo = lo). and 
hexagonal (n  = 6) crystal systems (1-111). The rhombic prism, having 
a rectangular cross section, dissolves according to: 

because of the isotropic retreat of all surfaces. Similarly to Eq. 8, this 
equation can be written: 

W W (Eq. 10) -- 
W n  COP 

The monoclinic prismatic particle, having a parallelogram cross sec- 
tion with an acute angle a, has at any time a cross-sectional area equal 
to bc sin a ,  where b = bo - [(Wlp) sin a)t and c = co - [(W/p) sin a]t ,  
so it dissolves according to: 

or: 

" = ( l - g t ) [ l - ( G  25 sin a ) t  ] 
wo 

x [ 1 - (5 sin a) t  ] (Eq. 12) 

Dissolution of Pyramidal Particles-The regular pyramidal 
forms of the isometric, tetragonal, and hexagonal systems (1-111) all 
dissolve like a spherical particle, following the "cube root law": all 
plane surfaces of the pyramid retreat toward its center of symmetry 
with the same constant speed during isotropic dissolution. Therefore, 
the shape of the pyramid remains the same while its size diminishes. 
It can, for example, be shown geometrically that all lengths of the 
prism decrease by a factor of 1 - (J/rop)t, where ro, given by: 

hobo 
2dho2  + bo214 ro = (Eq. 13) 

is the radius of the largest sphere that can be contained in the pyramid 
initially. The weight of the regular n-gonal prism at time t is equal 

I 
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Figure 2-Variation of the shape ratio, F, of a rhombic pyramidal 
particle having various shapes (see Structure IV for definitions of  
bo, CO, and ha). 

to jQnhtbt cot (h), where the height, ht ,  and side, bt, are ht = ho[l 
- (J/rop)t] and bt = bo[l - (J/rop)t],  respectively, according to the 
above theory. Thus, its weight is: 

1 w =Gpnhobo2 ( 1  - J t ) 3 ~ ~ t E  Top 

from which it follows t h a t  

- wo 

(Eq. 14) 

(Eq. 15) 

This equation is identical to Eq. 4. Therefore, a regular pyramidal 
crystal form dissolves in exactly the same way as the largest (hypo- 
thetical) spherical particle that can be contained within its boundaries 
initially. This is also approximately true for an irregular pyramidal 
form such as the rhombic pyramid when the irregularity is not too 
extreme. It can be shown, using a double integration approach, that 
this crystal form dissolves according to: 

E = ( 1 - $ t ) 2 [ 1 - ( & + G ) p t ]  3 J  (Eq.16) 
wo 

where: 

(Eq. 17) 

The deviation from spherical particle dissolution (Eq. 15) arises from 
the fact that bo < CO. If bo = CO, then Eq. 16 reduces to the special case 
of Eq. 15 as expected. 

To evaluate these single-particle dissolution equations, it is con- 
venient to present them in a transformed simplified form which better 
illustrates their intrinsic dissolution profile'. For example, Eq. 8 can 
be transformed to: 

(Eq. 19) _ -  - (1 - Ft*)(l - t * )2  W 

wo 

The concept of "intrinsic dissolution profile" was defined and discussed 
previously (6). It provides a powerful basis for the analysis of multiparticulate 
dissolution kinetics. In the case of single-particle dissolution, it enables the 
evaluation of the shape of the dissolution curve irrespective of the way time 
is scaled. 
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Figure 3-Application of the use of spherical approximations to 
describe the dissolution of an n-gonal prismatic particle (curve A, 
Eq. 20, F = *h). Curves C and E represent the dissolution of a 
spherical particle with the same volume (Eq. 27, F = I,&, n = 4,6) .  
Similarly, curves Dand F’represent a spherical particlehaving the 
same surface area (Eq. 26, F = l/4,:n* = 4.6). Curve B is the approri- 
mntion (Eq. 30, F = from whichthe equivalent spherical diameter 
is calculated (Eq. 31). 

where: 

t * =  -tan- t i; 3 
is denoted time length and: 

b 7 r  F = A c o t  - 
10 n 

(Eq. 21) 

is denoted the shape ratio. This form of the equation clearly shows 
that the intrinsic dissolution profile depends only on the value of the 
dimensionless shape ratio, F, which defines the particle shape. Fur- 
thermore, the transformation makes it more convenient to evaluate 
the extent to which dissolution of the prismatic particle deviates from 
spherical particle dissolution (i.e., from the cube root law). For F = 
1, i.e., when (w/wO)’/3 = 1 - t * ,  there is no such deviation; however, 
as F decreases, the deviation becomes more significant, i.e., when the 
length of the particle relative to its side length or “diameter” becomes 
more extreme. 

It is seen (Fig. 1) that as F decreases, the deviation from the cube 
root law becomes larger. Dissolution then approaches what can be 
called “the square root law,” that is, a linear relationship between 
( W / W O ) ’ / ~  and time length (or time). This is in agreement with the fact 
that, for small F values, Eq. 19 approximates ( W / L O O ) ~ / ~  = 1 - t* .  The 
cube root law and the square root law were each postulated previously 
as a model for the dissolution of a spherical particle under sink con- 
ditions (5,7). Pure drug particles are not spherical, however, but are 
often prismatic in shape. Therefore, the particle shape effect should 
be considered in any  experimental evaluation of such models. 

The dissolution equation for a rhombic pyramidal particle (Eq. 16) 
can also be transformed to Eq. 19 where: 

t * = i: - d h o 2  + bo2/4) t 

and: 

(Eq. 23) 

(Eq. 24) 

It is seen (Fig. 2) that the shape ratio, F, for this pyramidal particle 
form does not deviate much from 1 for most shapes, indicating that 
in most cases dissolution closely approximates that of a spherical 
particle. 

Dissolution equations for either a rhombic (Eq. 10) or a monoclinic 
(Eq. 12) particle can be written similarly, in a common transformed 
form, as: 

(Eq. 25) 

0.5 1 .o 
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Figure 4-Dissolution of an n-gonal prismatic particle (tetragonal 
or hexagonal) or a rhombic pyramidal particle having the shape ratio 
F = ‘/4 (unbroken line, Eq. 19) and a hypothetical spherical particle 
(broken line) representing the approximation (Eq. 30) from which 
the equivalent spherical diameter is calculated (Eq. 31). 

where F1 = (bo/co), Fz = (bo/lo), and t* = (W/bop)t  for a rhombic 
particle and F1= (bo/co), Fz = (bo/lo) sin a, and t* = (2J/bop sin a) t  
for a monoclinic particle. 

RESULTS AND DISCUSSION 

The main objective of studying single-particle dissolution kinetics 
is to gain a better understanding and description of multiparticulate 
systems. In practice, the particles in such a system vary both in size 
and shape, thus making a rigorous mathematical description quite 
complex. Such a description must include a bivariate distribution 
function of the particle dimensions, and evaluation of this distribution 
function is rather difficult. 

A considerable simplification can be achieved, however, if the 
dissolution of each particle in the multiparticulate sphere can be 
approximated by the dissolution of a hypothetical spherical particle 
of some specified diameter. The problem associated with the bivariate 
distribution function is then avoided, since the system is simplified 
to contain only one dimensional variable, the diameter of the spheres. 
The exact dissolution profile of the hypothetical particle system that 
approximates the real system can then be calculated using an equation 
presented previously (6,8). 

The usual approach to describe dissolution of nonspherical particles 
has been to approximate them by spherical particles having the same 
surface area or volume. It is of interest to evaluate the errors in such 
approximations. A spherical particle, having the same surface area 
as an n-gonal prismatic particle with shape ratio F, dissolves according 
to: 

Or, if it has the same volume, it dissolves according to: 

27rFcot- ‘ I 3  
= 1 - (G) t* (Eq. 27) 

where t * and F are defined by Eqs. 21 and 22. Figure 3 shows the 
substantial errors introduced by such approximations based on equal 
surface area or volume. This is not only the case for F = Y4 but for all 
other values of the shape ratio less than 1. 

The problem of finding the diameter of the spherical particle that 
best approximates the dissolution of an n-gonal prismatic particle 
is mathematically the same as finding a quantity, r,  such that: 

(Eq. 28) -- - (1 - rt*)3 

best fits Eq. 19. Possibly the best criterion for this fit is to minimize 

W 

wo 
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Table I-Summary of the Dissolution of the Particle Forms Including Expressions for Calculating the Equivalent 
Spherical Diameter 

Dissolution of Prismatic Particles0 

n-Gonal Prismatic Particles 

W 
Exact dissolution equation - = (1 - F t * ) ( l  - t* )*  

W O  

Spherical approximation C { I  - [ 2  - ( 2  - F ) ’ ’ ’ ] t * ] ’  
WO 

Equivalent Spherical Diameter 
2 J t  a =  

Crystal System Time Length, t *  Shape Ratiob, F [ 2  -(2 - F ) L ’ 3 ] p t *  

bo cot 2 L  (z tan : ) t  n-Gonal 

2-(2-4 10 

2 5  
- t  
bop 

Tetragonal (n = 4) 

Isometric (n = 4, bo = lo ) ‘2J - 1 

f i b o  2 J 3 J t  
3b0P 

Hexagonal (n = 6) 

Crystal System 

Rhombic and Monoclinic Particles 

Exact dissolution equations = ( 1  - F , t * ) ( l  - F , t * ) ( l  - t * )  
WO 

W 
Spherical approximation - i ( 1 - [ 2 - ( 2 -  F 1 ) ” ’ ( 2 -  F , ) ” ’ ] t * / ’  

WO 

Equivalent Spherical Diameter 
2Jt Shape Ratios 

a =  
Time Length, t*  F ,  F2 [2 - (2  - F , ) 1 ’ 3 ( 2 -  F , ) ” ’ ] p t *  

Rhombic 2 5  - t  
bo P 

b0 

Monoclinic b, sin it 
2J t 

bo P sin a 

Dissolution of Pyramidal Particles 

n-Gonal Pyramidal Particles (Isometric, Tetragonal, Hexagonal) 

W 

W ,  

- 
= (1 - t * ) 3  Exact dissolution equation 

Time length 
2 J J h O 2  + bo2  14 

t *  = t 
P 

hobo 
ho2  + b0’/4 Equivalent spherical diameterc a =  J 

Rhombic Pyramidal Particles 

W - -  - (1 - F t * ) ( l -  t * ) ,  
WO 

Exact dissolution equation 

~ 
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Table I-(Continued) 

Spherical approximation 

Time length 

Shape ratio 

Equivalent spherical diameter 
1 

n =  
Y 

[ 2 - ( 2 - F ) " 3  JJh,'  + b O 2 / 4  

aStructures 1-VI illustrate the quantities b,, to, I , ,  and a used. bWhen F = 1 ,  i.e., ( b  / I o )  = tan ( n / n ) ,  then the e uivalent spherical diameter 
isequalto the biggest sphere that ion be contained in the prismatic body. The sphericafapproximation of the dissolution then becomes exact. 
CThis diameter is equal to  the biggest sphere the pyramid can contain. 

the sum of the squared errors where these are weighted proportionally 
to w h o ,  i.e., to minimize the integral: 

I = $,' ((1 - Ft*)(l - t * ) 2  - (1 - ~t*)3]2 

(Eq. 29) 

by solving for x when allax = 0. The exact expression for x is too 
complex to be of value. However, a very good approximation was 
obtained by choosing x such that Eqs. 28 and 19 intersect a t  t-* = $ 
(point P, Fig. 3), which corresponds to x = 2 - (2 - F)'/3, such that 
the dissolution is approximated by the following equation for the 
hypothetical spherical particle: 

X (1 - Ft*)(l - t*)2 dt* 

(3'" = 1 - [2 - (2  - F)1/3Jt* (Eq. 30) 

The equivalent spherical diameter, a, i.e., the diameter of this 
spherical particle, can then be obtained by equating the right-hand 
sides of Eqs. 30 and 5 from which it follows that: 

w t  a =  
12 - (2 - F)"3]pt* (Es. 31) 

Although the approximation given by Eq. 30 (curve B, Fig. 3) does not 
seem to be a particularly good fit to the exact dissolution curve cal- 
culated for the n-gonal particle (curve A), when the same two curves 
are plotted as w h o  versus time length (Fig. 4) instead of as ( w / w ~ ) ' / ~ ,  
it is clear that this is because of the nonlinear scaling in the cube root 
plot. The stippled curve (Fig. 4) representing the spherical approxi- 
mation shows excellent fit to the true dissolution. The weighted errors 
of the spherical approximation were calculated for various values of 
the shape ratio F and showed (Fig. 5) that this choice for the ap- 
proximation was satisfactory. 

By using similar reasoning, i t  was found that the equation: 

(;)lB ='1 - [2 - (2 - F1)'I3(2 - F2)1/3]t* (Eq. 32) 

IT 

4 

t 
>-0.5 ' L 

0 0.5 1 
TIME LENGTH, t' 

Figure %Graph of errors in the spherical approximation (Eq. 30) 
of the disfolution (Eq. 19) of an n-gonul prismatic particle (isometric, 
tetragonal, or hexagonal) or a rhornbic pyramidal particle of dif- 
ferent shape ratios. The error is weighted proportionally to the 
fraction undissolved (w/wa). Key: 1, F = 1; 2, F = I,$; 3, F = Ih; and 
4, F = I,$. 

which is similar in form to Eq. 30, provides a good spherical approx- 
imation to Eq. 25, which describes the dissolution of rhombic and 
monoclinic prismatic particles. The equivalent spherical diameter 
in these cases is given by: 

(Eq. 33) 
w t  

[2 - (2 - F1)1/3(2 - Fz)1/3]pt* 
a =  

The error in this spherical approximation (Eq. 32) is substantially 
greater in the final stages of the dissolution process (Figs. 6 and 7) than 
in the previous case (Figs. 4 and 5). However, a previous study (8) 
showed that dissolution of a nonuniformly distributed, multiparti- 
culate system is only slightly affected by the dissolution behavior of 
the smallest particles. Substantial truncation a t  the lower end of the 
particle-size distribution had very little effect on the dissolution 
profile calculated (8). Thus, approximation error in the later stage 
of the single-particle dissolution does not introduce the same degree 
of error when applied to a nonuniformly distributed, multiparticulate 
system. The approximation (Eq. 32) should, therefore, yield consid- 
erably better results when applied to a multiparticulate system than 
might be judged from Fig. 6. This explains the choice of the particular 
weighting of the errors in the approximation procedure. 

Table I summarizes the dissolution of the particle forms shown in 
Structures I-VI and gives formulas for the calculation of the equiv- 
alent spherical diameter in each case2. The dissolution of these 10 
forms can be described by three basic transformed equations of cubic 
form in time length (or time). The dissolution can thus be described 
exactly by a third degree polynomial in time in all cases. 

'h 

Figure 6-Dissolution of monoclinic or rhornbic prismatic particles 
with shape ratios F1 = ',$ and FZ = '/4 (unbroken line, Eq. 25) and a 
hypothetical spherical particle (broken line) representing the ap- 
proximation (Eq. 32) from which the equivalent spherical diameter 
is calculated (Eq. 33). 

* The equation for a triclinic particle is not included because of its  complexity 
and limited application, but it can be transformed to Eq. 25. 
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Figure 7-Graph of errors in the spherical approximation (Eq. 32) 
to the dissolution (Eq. 25) of a monoclinic or rhombic prismatic 
particle of different shape ratios. The error is weighted propor- 
tionally to the fraction undissolved (wlwo). Key: I, Fz = Ih;2, F2 = 
‘h; and 3, Fz = ‘h. F1 = lh. 

The basic assumption behind these derivations is that the rate of 
dissolution per unit surface area, J ,  remains constant during disso- 
lution and is the same everywhere at  the interface of the dissolving 
crystal. This assumption can only be approximately true in practice 
under complete sink conditions. The higher activity a t  the crystal 
edges results in a larger J value in these areas and, therefore, a 
“rounding off” of the shape, so that dissolution in the later stages is 
slower than that calculated. However, this should result in an im- 

provement in the fit of the spherical approximation and sometimes 
may result in a closer fit to the real dissolution than the exact ex- 
pressions given for isotropic conditions. Thus, the approximating 
curve (stippled line, Figs. 4 and 6) ik above the calculated dieeolution 
curve in the later stages. The true dissolution curve, because of the 
rounding off effect, is above the calculated curve and hence closer to 
the approximation. 

Excellent agreement between experimental and calculated results 
was obtained for the dissolution of a multiparticulate system of par- 
ticles, approximately tetragonal prismatic in shape, when the re- 
spective spherical approximations were applied (9). 
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Experimental Evaluation of Three Single-Particle 
Dissolution Models 

PETER VENG PEDERSEN” and K. F. BROWN 

Abstract 0 The dissolution of the 60-85-mesh fraction of tolbuta- 
mide was investigated using a high precision, continuous record- 
ing, flow-through dissolution apparatus equipped with a dissolu- 
tion cell; it was particularly suitable for kinetic analysis of mul- 
tiparticulate systems. By using a time-scaling approach, experi- 
mental data are compared with theoretical calculations to evalu- 
ate, quantitatively, which of three single-particle dissolution mod- 
els best describes the data and how well the multiparticulate ki- 
netics can be explained mathematically. The nonspherical tolbuta- 
mide particles are replaced in the calculations by a hypothetical 

system of spherical particles that appears to be log-nsrmally dis- 
tributed. This procedure permits the calculation of the intrinsic 
dissolution profile, considering both size distribution and particle 
shape effects. 

Keyphrases Dissolution-tolbutamide, three single-particle 
models evaluated and compared, mathematical analysis 0 Tolbu- 
tamide-dissolution, three single-particle models evaluated and 
compared, mathematical analysis 

There are several kinetic models for single-particle 
dissolution. Experimental evaluation of these models 
has been based on multiparticulate dissolution data, 
but distribution and particle shape effects have not 
been considered. The general theory of multiparticu- 
late dissolution was discussed previously (1). This 
theory was subsequently used to develop mathemati- 
cal expressions for the dissolution of log-normally 

distributed powders, considering three single-particle 
dissolution models (2). 

A recent publication (3) dealt with the theory of 
single-particle dissolution in relation to particle 
shape. It gives directions for calculating the diameter 
of hypothetical spherical particles whose dissolution 
approximates nonspherical particles with minimum 
error. This paper demonstrates the application of 
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